CS294-4 Spring 2005 Homework #7

GREG GIBELING
GDGIB@EECS.BERKELEY.EDU
UC BERKELEY

11/1/2005

CS294-4 Homework #7

1.0 SHIPs & Mechanisms

During the course of CS294-4, there have been many proposals for FLEET in
general and SHIPs in particular, often as a direct result of a toy problem under
consideration. However, as time progresses, and with each passing discussion of
implementation details I find it more pressing to enumerate the list of not only SHIPs, but
mechanisms and data types in FLEET. This section attempts to do so without
explanation, which it is my intent to provide in later sections.

1.1 Mechanisms

In this section I list the basic features of FLEET which make it unique. This
should be a relatively straightforward re-hashing of that which we already know, or have
been assuming, in a more concise summary form.

e The move instruction

Concurrent code bags & descriptors
Literal instructions
Out of band data values for all data types
Single producer, single consumer data values
Lossless, out of order data delivery

1.2 Data Types

One of the original pieces of the FLEET proposal which set it apart from existing
architectures was the introduction of data types at the ISA level. This section lists those
types which we have found essential to date.

* Integers

e Tokens

¢ Booleans

¢ Floating Point

On and off there has been discussion of a string or character data type as well. I
find this unnecessary at the ISA level, unless we intend to add SHIPs which directly
process character data. In light of that ASCII to Unicode switch, I question the wisdom
of this approach and have therefore left mention of these data types out of this document.
I am not answering questions about the wisdom or value of their inclusion, merely
ignoring them at the present time.

I would also like to take this opportunity to steal a notation from type theory
publications that a variable or port name should be annotated with a subscript indicating
its type, namely the first letter of the type, and will appear in italic, when written in the
text of this document. Thus a token might be X7.

UCB 1 2005

CS294-4 Spring 2005 Homework #7

1.3 SHIPs

On of the most fun parts of this class has been proposing, specifying and
suggesting uses for SHIPs. However, in our general discussions we have often digressed
into constructing rather strange and specialized SHIPs, which I do not imagine will be of
overwhelming value (eg, a Warnock sorter). In light of this, I am here attempting to list
those basic SHIPs, whose inclusion in FLEET 1 find essential at this stage. Further
discussion and additional SHIPs are clearly warranted.

Because the SHIPs vary widely in their intended uses and reasons for inclusion
the list below is broken into sections of descending commonality and increasing
specialization. The first section describes operations which are natural for today’s CPUs,
and the second optimizations and additions which are conceptually obvious if not
commonplace in implementation. However the third section describes operations entirely
unique to FLEET and it’s design.

e Standard Operations
o 2-input ALU (Add, Subtract, Bitwise Operations)
o Logical Test
o Bitwise Inversion
o Memory Read
o Memory Write
e Semi-Standard Operations
o 2-input Boolean Operations
Boolean Not
3-input fused multiply and add
3-input Add
Register
Filter

o Real Time Clock
e Unique Operations

o Counted Input And
Triggered Token Source
Replicate
Gateway
Bit-Bucket
FIFO
Load Code Bag

O O O O O

O O O O O O

UCB 2 2005

CS294-4 Spring 2005 Homework #7

2.0 SHIPs: Specifications and Justifications

To date most of our discussions and results have been in English, and this is fine.
However in light attempting to write this section, I find that perhaps the time is right to
begin thinking about formal specifications of the behavior of a FLEET system. I hope
that this section will be well written and clear, but without a formal notation I fear we
will still find room for debate and confusion.

2.1 Standard SHIPs

2.1.1 ALU (2-Input, Configurable Operation)

I find this to be the most basic and obvious SHIP required, capable of performing
any simple two input operation on each pair of (integer) values which arrive at its inputs.
It’s operation would be controlled by an encoded integer input, allowing a certain amount
of interesting flexibility.

Opt

—Arg1 =P

4Donel1—

'—Out|—}

‘— Nextr—

ALU
—Arg2=p

4Done2—

Figure 1: ALU, 2-Input

First of all, by connecting the output, Out,, to the input Arg2;, and we can produce
an interesting variant on an accumulator based machine, with the ability to feed a series
of inputs and operations in using Argl; and Op;.

Second, having a data controlled operation will allow us to more easily replicate
the functionality of this unit (perhaps adding a hundred or them) without restricting the
mix of operations our FLEET implementation requires to perform efficiently.

Third, at a hardware level all of these operations require very similar transistor
structures, making separate implementations a much less attractive alternative. This is
especially true in a chip where area is almost certainly going to be dominated by wiring,
as in FLEET s switch fabric.

2.1.2 Logical Test
[aint finished yet. Don’t got the time...

UCB 3 2005

CS294-4 Spring 2005 Homework #7

3.0 Example: A Composite Stride SHIP

In this section I give an example of how to construct expanded functionality from
the primitive SHIPs listed above. This is clearly motivated by Igor’s thinking from
10/31/05.

First of, the reader deserves some explanation as to why I chose to implement this
SHIP out of others rather than as a primitive, as we have previously assumed would be
the case. My primary motivation for this was the realization that any debate we were
having as to the external functionality of a SHIP like this, especially with respect to loop
initialization and termination conditions, cannot be solved easily with a single answer.
No matter how we build a stride SHIP, it will be wrong for some value of wrong.

What is more so: if we operate under the assumption that we have on the order of
1000 SHIP ports available to us (assuming 20bits of a 32bit move instruction are for
source and destination with half going to each) it is reasonable to assume that will gain
performance not be adding specialty SHIPs such as Warnock or perhaps even stride, but
rather by replicating the simplest SHIPs and allowing a programmer to make their own
complex behaviors. Of course this behavior has a limit: the 3-input adder is still included
as a SHIP because it is very useful, and easy to specialize back to a 2-input adder. Only
performance numbers can really place the optimal boundary between direct SHIP
implementation and composite functionality.

I
/ LASTT
Buggy Composite Stride SHIP
—Addr e Reg
1 ~
Op 3
v 2
Replicate Ei
+—SteprP; p2| Reg t+——Argl—P g
£
)) Hold Indexrr
| Replicate 4
_OUtH p2
ALU
GotStep, Rep'z'cateq— Hold M—Nextr—]
——GatedNextr
) Arg2y 1\
| —Base ’_’ Replzlcate N
Triggered . Ready:
I Counted) Replicate
GotBaserJF—p Input And Go érgbir; —Triggerr—p
—2 5 ReTriggerr T

Figure 2: A Buggy Composite Stride SHIP

Shown in figure 2, above is a complete composite stride SHIP built from the
primitive SHIPs as described in section 2.0 SHIPs: Specifications and Justifications.
Some of the key features of this design include the fact that one could easily attach an
external limit by using a 2 input ALU, a logical test and a LAST token generator,
connected to the LASTr input.

UCB 4 2005

CS294-4 Spring 2005 Homework #7

The grayed SHIPs in the figure also have an interesting feature that they are used
only at startup, and thus could be reused as soon as the Readyr move is fired for the first
time. A programmer could replicate that signal another time and use it load a new code
bag which is able to re-use the gray SHIPs.

Equally interesting is the combination of the Triggered Token Source and
Replicate2 SHIPs, which are connected in a feedback loop. Upon the entry of the two
standing moves Triggerr and ReTriggerr, the token source is idle, and thus the two SHIPs
are doing nothing at all. However once the Counted Input And fires a token through Gor,
we now have an infinite token generator. However, there is a flaw in this
implementation, which might only now be obvious! The infinite token source is likely to
jam the switch fabric with a constant stream of tokens, result in the LAST token never
being seen, and possibly, deadlock. The correction is shown in figure 3 below.

I
LAST

Fixed Composite Stride SHIP
—Add d Reg
T .
Op é
h 4 °
£
i ©
—Stepr Repgcate Reg ——Argli—)| H
£
$ Hold Index=p
v
| Lout I l Replzlcate
ALU
GotStep, L GatedNexty Rep'?'fate | Hold WNextr—]
T\
o _a Replicate N Arg2;
Baser P
Triggered
! Counted L
GotBaserJF—P; Input And G ;’oken Readyr
ource
—2 £+ ReTriggerr——

Figure 3: The Correct Composite Stride SHIP

The fairly simple correction to this problem was to widen the feedback loop by
making it depend on an external token source Next; as well as the internal Triggered
Token Source. While this does make the cycle time of this unit 3 traversals of the switch
fabric instead of two, it also prevents deadlock.

UCB 5 2005

CS294-4 Spring 2005 Homework #7

4.0 Future Work

First of all, the documentation for the primitive SHIPs is incomplete.

Furthermore a number of composite SHIPs, such as the gateway or synchronizer
SHIPs which we discussed on 10/31/05 need to be built out of primitive SHIPs (which
should be possible), or perhaps specified as primitive SHIPs. Which leads directly to the
problem of how to decide what functionality deserves a special SHIP. 1 would
recommend some form of the MIPS 1% rule, or perhaps a 5% rule even: a new dedicated
SHIP must show a 1% (5%) improvement in performance before it will be considered for
inclusion.

And finally, in the last paragraph of the section regarding the stride SHIP, the idea
of pipelined SHIPs having their performance measured in terms of switch fabric delays,
or SHIP delays was mentioned, but glossed over. I think this may well be a powerful was
of characterizing the performance of a design like this, it is relatively implementation
independent, and it foster’s a design style wherein feedback loops are kept as small as
possible thereby increasing opportunities for virtualization (the interaction between
virtualization and feedback loops in this style of framework is complicated, and I would
recommend the reader to the literature from the SCORE project here at Berkeley, which I
believe gives a good account of it).

UCB 6 2005

