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1.0 Introduction 
In the original specifications for 

FLEET discussed, debated and 
implemented throughout the 2005/2006 
school year at UC Berkeley, FLEET 
retained an element of strong data typing 
at the architectural level.  This feature 
was in strong contrast to most existing 
ISAs which make no distinction between 
various data types. 

With the advent of IES30[] data 
typing of most operands has been 
abandoned, in favor of the more 
common method of allowing the various 
operators to determine and interpret the 
types of their data.  This update works 
hand in hand with the removal of 
standing moves and out of band values. 

However, as FLEET drifts 
slowly towards a more common 
architecture, with respect to data types, it 
has inherited one of the primary flaws of 
these architectures, which has been 
arbitrarily imposed by tradition: namely 
that instructions and data should be 
separate.  In a single-cycle, pipelined or 
even out of order processor design, this 
distinction may be viewed as beneficial 
as it removes some circularity and 
dependence between the instruction 
fetch and decode logic, and the 
execution logic.  Yet it does require, or 
at least imply, that instruction and data 
cache should be separate, requiring 
duplicate storage structures. 

While the duplicate caches are a 
small price to pay given the availability 
of silicon area, and the separation of 

fetch and decode from execution is 
beneficial, FLEET does not share this 
optimistic outlook.  First, because 
FLEET is intended to be highly 
concurrent, hopefully far more than the 
standard 4-way superscalar designs 
which are currently practical, and second 
because FLEET is centered around the 
cost of moving data through a switch 
fabric, rather than ignoring the 
multiplexers that would normally handle 
the same work, there is actually a 
substantial positive cost to separation of 
code and data. 

The costs include: 
• Duplicate switch fabrics for routing 

instructions and data. (Section 2.1 
The Switch Fabrics) 

• Logic to distinguish and decode 
more data types. (Section 2.2 
Literals) 

• Inflexibility of the fetch logic. 
(Section 2.3 Sequencing & Fetching) 

• Inability to sequence instructions 
without false data dependencies. (2.4 
Passive Reads & Tokens) 

 

2.0 Existing Design 
This section outlines the current 

design of FLEET with respect to a 
number of the less-well understood 
implications of our current thinking.  It 
attempts to make fewer assumptions that 
are generally made in class, and to point 
out flaws in current thinking without 
regard to solutions.  Solutions are 
presented in section 3.0 1st Class 
Instructions. 



2.1 The Switch Fabrics 
First of all, the separation of 

instructions and data has thus far led to 
the assumed existence of duplicate 
switch fabrics.  The first, the ‘I’ fabric 
carries instructions from a data structure 
(a mapping of SHIP source ports to lists 
of instructions) known as the instruction 
pool, to the SHIP sources.  Because of 
the ordering guarantee outlined in 
IES30[], this fabric must perform either 
oblivious routing, or ensure that only 
one instruction per SHIP source is active 
at any one time.  Once an instruction has 
arrived at a source it is buffered, perhaps 
only briefly waiting for the data which it 
is intended to move.  This data is then 
routed to its destination over what has 
been assumed to be a standard packet 
switched second, or ‘D’ switch fabric. 

In general this means that both an 
instruction on its way to a source, and 
data on its way to a destination are 
assumed to be represented as standard 
<destination, payload> packets in an 
obliviously routed packed switched 
network, and that there are two such 
identical networks. 

This scheme has the drawback 
that each switch fabric is likely to be 
costly and perhaps complicated, not to 
mention that silicon layout will be 
complicated by the overlap of the two. 

2.2 Literals 
Literals thus far in the design of 

FLEET have remained a source of 
contention and uncertainty.  Various 
schemes for their introduction to a 
running processor have been discussed, 
ranging from special “literal bags” 
which are collections of literals loaded 
form memory with each code bag but 
which could be shared by various code 
bags, all the way to a special form of the 
move instruction. 

In the end, both of these 
solutions have significant drawbacks.  
The use of literal bags entails the 
fetching of literals possibly from another 
memory location, resulting in likely 
instruction cache problems, not to 
mention coherence and consistency 
overhead in the event of literal sharing.  
The use of special “literal move” 
instructions however introduces a kind 
of instruction which is no longer 
particularly well defined in light of 
section 2.1 The Switch Fabrics, as they 
must presumably start off as instructions 
in the ‘I’ fabric, but must then be moved 
over to the ‘D’ fabric for delivery. 

2.3 Sequencing & Fetching 
One of the most pervasive 

problems encountered throughout the 
effort to write useful FLEET programs 
during spring 2006, was the lack of 
sequencing guarantees.  This led to 
various schemes were the loading of 
code bags was triggered by the 
completion of an operation, often 
through explicit, and otherwise false, 
data dependencies. 

IES30[] resolved many of these 
issues by adding a source sequence 
guarantee; that all instructions within a 
single code bag which take data from a 
single source will be executed in the 
order in which they appear in memory.  
While this scheme deserves significant 
credit for reducing the sequencing 
problems, it does not eliminate them. 

A normal processor provides 
roughly two guarantees, one for source 
sequencing as above, and a similar one 
for destination sequencing.  Without the 
destination sequencing guarantee there 
must still be times when a program will 
require explicit token based sequencing, 
and as a result becomes very convoluted 
and slow with many trips through the 



‘D’ fabric.  The assembly of records 
[IES31] comes to mind as a particular 
problem. 

Furthermore, the source sequence 
guarantee may be too strong for many 
programs, or at least many code bags.  In 
general there are likely to be a 
significant number of situations where 
no such guarantee is needed, or perhaps 
where no such guarantee is useful.  A 
SHIP which outputs the same data 
repeatedly, and a SHIP which is part of 
an occupancy one, self-sequenced loop 
are perhaps the most obvious two. 

2.4 Passive Reads & Tokens 
In IES31[] there are a number of 

paragraphs outlining the design of base 
literal generation SHIPs, ones which 
generate ‘true’, ‘false’ or ‘0’, not to 
mention timestamps or random numbers.  
For all of these SHIPs two designs are 
considered which are generally classified 
in the I/O peripheral community as 
active and passive read.  Active read 
designs are those which imply some 
action upon read, i.e. those designs in 
IES31[] which can produce an output 
value at any time, a random number 
generator which generates a new value 
each time it is read, or a stack SHIP 
which pops any value read from its 
output.  Passive read designs perform 
roughly the same function but separate 
the act of, for example reading the 
current random number, from the act of 
generating a new one, which must now 
be controlled by a token. 

In general I/O peripheral designs 
make careful use of both schemes, often 
using active read where buffering is 
implied such as a stack SHIP.  In FLEET 
as currently described however, tokens 
and the exclusive use of passive reads 
are practically dictated by the lack of 
destination sequence guarantee and the 

loose concurrency provided by code 
bags. 

This problem is alleviated by the 
source sequence guarantee in that a stack 
SHIP could peek or pop it’s top 
depending on whether a move or copy 
instruction was received, but the 
situation for a random number generator, 
or worse, a timestamp generator is 
completely untenable without a positive, 
sequence-able trigger input such as a 
token. 

3.0 1st Class Instructions 
In the previous sections, a 

number of problems were presented, and 
a couple of assumptions questioned, or 
at least brought to light as questionable.  
This section presents a single solution 
which seems, at this time, to resolve a 
number of design, programming and 
implementation problems. 

 

3.1 A Definition 
IES30 purports to eliminate data 

types from the FLEET specification, and 
yet there remain two: data and 
instructions.  As written, and as assumed 
in more common ISAs, instructions are a 
sort of second class type of data.  This 
assumption has far-reaching implications 
which in general are the cause of many 
of the problems outlined in section 2.0 
Existing Design.  Further problems 
include the separation of I and D cache, 
not to mention the prohibition against 
self-modifying code, which was the 
basis of a lively discussion in Fall of 
2005. 

By truly removing data type 
separation, and viewing all data within a 
FLEET as nothing more than bits 
interpreted by whatever SHIP or switch 
fabric they are handed too we can 
greatly simplify the design, 



programming and implementation of 
FLEET. 

A brief description of the life 
cycle of these new instructions will 
guide the following discussion.  First an 
instruction must be read from memory, 
an operation which in this model can be 
safely left to a standard memory access 
SHIP rather than a specialized fetch 
SHIP.  Perhaps the only specialized 
operation is that the data read from 
memory should be inject directly into the 
switch fabric.  Because the instructions 
are represented in memory and in the 
switch fabric in identical formats this is 
a trivial operation.  These instructions or 
packets, will include a destination header 
and a payload.  Presumably most of 
them will be identical to the old move 
instructions, whereby the destination of 
the instruction will be the source of the 
move (or a special port on the same 
SHIP) and the payload of the instruction 
will be the destination of the move, 
which the source should attach to 
whatever data is waiting. 

3.2 The Switch Fabric 
This is by far the most 

straightforward step: by merging our 
ideas of data and instructions, we can 
entirely eliminate the use of separate 
switch fabrics.  While this does increase 
the size of remaining switch fabric, 
which may very well grow in super-
linearly with respect to the number of 
SHIP ports it must service, the resulting 
simplicity should more than repay this 
cost. 

Furthermore while it is currently 
assumed that the switch fabric is a 
simple merge and fan-out design, this 
may not always be the case.  By 
reducing a FLEET to a single, seemingly 
uniform, switch fabric, and leaving its 
implementation for later we can greatly 

increase the odds of an efficient 
implementation. 

In this case, the switch fabric is 
reduced a single packet-switched 
network, which can carry variable length 
payloads; it need make no distinction 
between instructions and data.  Some 
may be made in the case of e.g. the Bit 
Bucket, or other such optimization cases, 
but in the abstract this is a far simpler 
design.  Furthermore, with the advent of 
some tricks described in the below 
sections, it is likely that the oblivious 
routing requirement will be rendered 
unnecessary and cumbersome, further 
simplifying matters.  As a final point a 
packet-switched network is a relatively 
common entity which it is easy to build 
and experiment on, whereas the custom 
switch fabrics described in section 2.1 
The Switch Fabrics, are likely to be 
highly specialized. 

3.3 Data Typing, Literals & 
Fetching 

By reducing all instructions to a 
simple data packet with a destination 
address and a payload, it is easy to 
implement literals as a packet whose 
payload is a literal, rather than the 
destination address of a move, as 
described in section 3.1 A Definition. 

In addition there is no longer any 
need to separate literals as a special case.  
This obviates all debate over the use of 
literal bags, special literals SHIPs or 
event the need for a special form of the 
move instruction. 

Furthermore, the use of a 
standard memory read SHIP rather than 
a specialized fetch ship will allow the 
programmer to determine the timing and 
method of the fetch ordering.  This 
implies that source sequencing is no 
longer a meaningful property, but rather 
one which a programmer can choose.  It 



is possible that the first code bag loaded 
upon reset could setup the functional 
equivalent of the fetch SHIP as outlined 
in IES30.  However it should be equally 
possible to create a far less constraint 
fetch system in the event of highly 
concurrent code. 

Overall the removal of 
instructions as a distinct data type 
simplifies a number of the design points 
of FLEET as well as ending some of the 
more contentious debates among the 
designers, implementers and 
programmers. 

3.4 Sequencing, Passive 
Reads & Tokens 

The primary reason for the 
existence of tokens and the use of 
passive reads, which often imply the 
existence of a token to perform some 
related action, is to control the 
sequencing of operations. 

The primary drawback of this 
approach is that it rests on the 
introduction of data-dependencies in the 
form of tokens to stand in for what in a 
common ISA would be a control-
dependence.  Not only does this scheme 
obscure the meaning of tokens 
somewhat, but it also increases the 
number of move instructions required to 
execute a fixed amount of work, as the 
tokens must traverse the switch fabric, 
adding to the latency of the operation. 

With the advent of first class 
instructions, instructions become 
sequence-able.  That is to say, there can 
exist SHIPs which control the timing of 
the injection of instructions into the 
switch fabric based on the completion of 
operations.  With this capability in hand, 
we can now use the arrival of instruction 
packets, that is packets whose payload is 
a destination address to be added to 
some data, to perform the same 

sequencing function that tokens 
previously provided.  Now, all SHIPs 
which output tokens upon completion 
should instead provide a packet 
(instruction) pass-through interface, 
whereby an instruction accepted at a 
special destination would be passed 
unmolested out of a source upon 
completion of an operation. 

Furthermore, because instruction 
packets now represent the control 
dependencies in a very well defined 
form, they can be used in active reads, 
whereby the delivery of an packet will 
tell, e.g. a timestamp generator both to 
read the current time, and where to send 
it. 

4.0 Conclusion 
By removing the distinction 

between data and instructions in the 
switch fabric of FLEET, we allow 
instructions to be a 1st class datatype.  In 
doing this we simplify the overall 
architecture by removing a redundant 
switch fabric, and the need for a special 
fetch SHIP.  This also reduces the cost 
related to the source sequence guarantee, 
by allowing the user to selectively 
invoke it.  In addition the issues which 
have perennially plagued the literals and 
token sequencing mechanisms become 
simplified in a unified way, which has 
the added benefit of completely 
obviating the need for SHIPs which 
generate a fixed literal upon the receipt 
of a token. 

Overall first class instructions 
simplify a wide range of design, 
programming and implementation 
problems by relying on the well 
understood mechanism of packet 
switched networks to control both 
sequencing, communication and control. 


