1%! Class Instructions for FLEET

Greg Gibeling
Wednesday October 4™, 2006
GDGO1 — 1* Class Instructions for FLEET

1.0 Introduction

In the original specifications for
FLEET discussed, debated and
implemented throughout the 2005/2006
school year at UC Berkeley, FLEET
retained an element of strong data typing
at the architectural level. This feature
was in strong contrast to most existing
ISAs which make no distinction between
various data types.

With the advent of IES30[] data
typing of most operands has been
abandoned, in favor of the more
common method of allowing the various
operators to determine and interpret the
types of their data. This update works
hand in hand with the removal of
standing moves and out of band values.

However, as FLEET drifts
slowly towards a more common
architecture, with respect to data types, it
has inherited one of the primary flaws of
these architectures, which has been
arbitrarily imposed by tradition: namely
that instructions and data should be
separate. In a single-cycle, pipelined or
even out of order processor design, this
distinction may be viewed as beneficial
as it removes some circularity and
dependence between the instruction
fetch and decode logic, and the
execution logic. Yet it does require, or
at least imply, that instruction and data
cache should be separate, requiring
duplicate storage structures.

While the duplicate caches are a
small price to pay given the availability
of silicon area, and the separation of

fetch and decode from execution is

beneficial, FLEET does not share this

optimistic outlook. First, because

FLEET is intended to be highly

concurrent, hopefully far more than the

standard 4-way superscalar designs
which are currently practical, and second
because FLEET is centered around the
cost of moving data through a switch
fabric, rather than ignoring the
multiplexers that would normally handle

the same work, there is actually a

substantial positive cost to separation of

code and data.
The costs include:

e Duplicate switch fabrics for routing
instructions and data. (Section 2.1
The Switch Fabrics)

e Logic to distinguish and decode
more data types. (Section 2.2
Literals)

e Inflexibility of the fetch Ilogic.
(Section 2.3 Sequencing & Fetching)

e Inability to sequence instructions
without false data dependencies. (2.4
Passive Reads & Tokens)

2.0 Existing Design

This section outlines the current
design of FLEET with respect to a
number of the less-well understood
implications of our current thinking. It
attempts to make fewer assumptions that
are generally made in class, and to point
out flaws in current thinking without
regard to solutions. Solutions are
presented in section 3.0 1% Class
Instructions.

2.1 The Switch Fabrics

First of all, the separation of
instructions and data has thus far led to
the assumed existence of duplicate
switch fabrics. The first, the ‘I’ fabric
carries instructions from a data structure
(a mapping of SHIP source ports to lists
of instructions) known as the instruction
pool, to the SHIP sources. Because of
the ordering guarantee outlined in
IES30[], this fabric must perform either
oblivious routing, or ensure that only
one instruction per SHIP source is active
at any one time. Once an instruction has
arrived at a source it is buffered, perhaps
only briefly waiting for the data which it
is intended to move. This data is then
routed to its destination over what has
been assumed to be a standard packet
switched second, or ‘D’ switch fabric.

In general this means that both an
instruction on its way to a source, and
data on its way to a destination are
assumed to be represented as standard
<destination, payload> packets in an
obliviously routed packed switched
network, and that there are two such
identical networks.

This scheme has the drawback
that each switch fabric is likely to be
costly and perhaps complicated, not to
mention that silicon layout will be
complicated by the overlap of the two.

2.2 Literals

Literals thus far in the design of
FLEET have remained a source of
contention and uncertainty. Various
schemes for their introduction to a
running processor have been discussed,
ranging from special “literal bags”
which are collections of literals loaded
form memory with each code bag but
which could be shared by various code
bags, all the way to a special form of the
move instruction.

In the end, both of these
solutions have significant drawbacks.
The use of literal bags entails the
fetching of literals possibly from another
memory location, resulting in likely
instruction cache problems, not to
mention coherence and consistency
overhead in the event of literal sharing.
The use of special “literal move”
instructions however introduces a kind
of instruction which is no longer
particularly well defined in light of
section 2.1 The Switch Fabrics, as they
must presumably start off as instructions
in the ‘I’ fabric, but must then be moved
over to the ‘D’ fabric for delivery.

2.3 Sequencing & Fetching

One of the most pervasive
problems encountered throughout the
effort to write useful FLEET programs
during spring 2006, was the lack of
sequencing guarantees. This led to
various schemes were the loading of
code bags was triggered by the
completion of an operation, often
through explicit, and otherwise false,
data dependencies.

IES30[] resolved many of these
issues by adding a source sequence
guarantee; that all instructions within a
single code bag which take data from a
single source will be executed in the
order in which they appear in memory.
While this scheme deserves significant
credit for reducing the sequencing
problems, it does not eliminate them.

A normal processor provides
roughly two guarantees, one for source
sequencing as above, and a similar one
for destination sequencing. Without the
destination sequencing guarantee there
must still be times when a program will
require explicit token based sequencing,
and as a result becomes very convoluted
and slow with many trips through the

‘D’ fabric. The assembly of records
[IES31] comes to mind as a particular
problem.

Furthermore, the source sequence
guarantee may be too strong for many
programs, or at least many code bags. In
general there are likely to be a
significant number of situations where
no such guarantee is needed, or perhaps
where no such guarantee is useful. A
SHIP which outputs the same data
repeatedly, and a SHIP which is part of
an occupancy one, self-sequenced loop
are perhaps the most obvious two.

2.4 Passive Reads & Tokens

In IES31][] there are a number of
paragraphs outlining the design of base
literal generation SHIPs, ones which
generate ‘true’, ‘false’ or ‘0’, not to
mention timestamps or random numbers.
For all of these SHIPs two designs are
considered which are generally classified
in the I/O peripheral community as
active and passive read. Active read
designs are those which imply some
action upon read, i.e. those designs in
IES31[] which can produce an output
value at any time, a random number
generator which generates a new value
each time it is read, or a stack SHIP
which pops any value read from its
output. Passive read designs perform
roughly the same function but separate
the act of, for example reading the
current random number, from the act of
generating a new one, which must now
be controlled by a token.

In general I/O peripheral designs
make careful use of both schemes, often
using active read where buffering is
implied such as a stack SHIP. In FLEET
as currently described however, tokens
and the exclusive use of passive reads
are practically dictated by the lack of
destination sequence guarantee and the

loose concurrency provided by code
bags.

This problem is alleviated by the
source sequence guarantee in that a stack
SHIP could peek or pop it’s top
depending on whether a move or copy
instruction was received, but the
situation for a random number generator,
or worse, a timestamp generator is
completely untenable without a positive,
sequence-able trigger input such as a
token.

3.0 1% Class Instructions

In the previous sections, a
number of problems were presented, and
a couple of assumptions questioned, or
at least brought to light as questionable.
This section presents a single solution
which seems, at this time, to resolve a
number of design, programming and
implementation problems.

3.1 A Definition

IES30 purports to eliminate data
types from the FLEET specification, and
yet there remain two: data and
instructions. As written, and as assumed
in more common ISAs, instructions are a
sort of second class type of data. This
assumption has far-reaching implications
which in general are the cause of many
of the problems outlined in section 2.0
Existing Design. Further problems
include the separation of I and D cache,
not to mention the prohibition against
self-modifying code, which was the
basis of a lively discussion in Fall of
2005.

By truly removing data type
separation, and viewing all data within a
FLEET as nothing more than bits
interpreted by whatever SHIP or switch
fabric they are handed too we can
greatly simplify the design,

programming and implementation of
FLEET.

A brief description of the life
cycle of these new instructions will
guide the following discussion. First an
instruction must be read from memory,
an operation which in this model can be
safely left to a standard memory access
SHIP rather than a specialized fetch
SHIP. Perhaps the only specialized
operation is that the data read from
memory should be inject directly into the
switch fabric. Because the instructions
are represented in memory and in the
switch fabric in identical formats this is
a trivial operation. These instructions or
packets, will include a destination header
and a payload. Presumably most of
them will be identical to the old move
instructions, whereby the destination of
the instruction will be the source of the
move (or a special port on the same
SHIP) and the payload of the instruction
will be the destination of the move,
which the source should attach to
whatever data is waiting.

3.2 The Switch Fabric

This is by far the most
straightforward step: by merging our
ideas of data and instructions, we can
entirely eliminate the use of separate
switch fabrics. While this does increase
the size of remaining switch fabric,
which may very well grow in super-
linearly with respect to the number of
SHIP ports it must service, the resulting
simplicity should more than repay this
cost.

Furthermore while it is currently
assumed that the switch fabric is a
simple merge and fan-out design, this
may not always be the case. By
reducing a FLEET to a single, seemingly
uniform, switch fabric, and leaving its
implementation for later we can greatly

increase the odds of an efficient
implementation.

In this case, the switch fabric is
reduced a single packet-switched
network, which can carry variable length
payloads; it need make no distinction
between instructions and data. Some
may be made in the case of e.g. the Bit
Bucket, or other such optimization cases,
but in the abstract this is a far simpler
design. Furthermore, with the advent of
some tricks described in the below
sections, it is likely that the oblivious
routing requirement will be rendered
unnecessary and cumbersome, further
simplifying matters. As a final point a
packet-switched network is a relatively
common entity which it is easy to build
and experiment on, whereas the custom
switch fabrics described in section 2.1
The Switch Fabrics, are likely to be
highly specialized.

3.3 Data Typing, Literals &
Fetching

By reducing all instructions to a
simple data packet with a destination
address and a payload, it is easy to
implement literals as a packet whose
payload is a literal, rather than the
destination address of a move, as
described in section 3.1 A Definition.

In addition there is no longer any
need to separate literals as a special case.
This obviates all debate over the use of
literal bags, special literals SHIPs or
event the need for a special form of the
move instruction.

Furthermore, the use of a
standard memory read SHIP rather than
a specialized fetch ship will allow the
programmer to determine the timing and
method of the fetch ordering. This
implies that source sequencing is no
longer a meaningful property, but rather
one which a programmer can choose. It

is possible that the first code bag loaded
upon reset could setup the functional
equivalent of the fetch SHIP as outlined
in IES30. However it should be equally
possible to create a far less constraint
fetch system in the event of highly
concurrent code.

Overall the removal of
instructions as a distinct data type
simplifies a number of the design points
of FLEET as well as ending some of the
more contentious debates among the
designers, implementers and
programmers.

3.4 Sequencing, Passive
Reads & Tokens

The primary reason for the
existence of tokens and the use of
passive reads, which often imply the
existence of a token to perform some
related action, is to control the
sequencing of operations.

The primary drawback of this
approach is that it rests on the
introduction of data-dependencies in the
form of tokens to stand in for what in a
common ISA would be a control-
dependence. Not only does this scheme
obscure the meaning of tokens
somewhat, but it also increases the
number of move instructions required to
execute a fixed amount of work, as the
tokens must traverse the switch fabric,
adding to the latency of the operation.

With the advent of first class
instructions, instructions become
sequence-able. That is to say, there can
exist SHIPs which control the timing of
the injection of instructions into the
switch fabric based on the completion of
operations. With this capability in hand,
we can now use the arrival of instruction
packets, that is packets whose payload is
a destination address to be added to
some data, to perform the same

sequencing function that tokens
previously provided. Now, all SHIPs
which output tokens upon completion
should instead provide a packet
(instruction) pass-through interface,
whereby an instruction accepted at a
special destination would be passed
unmolested out of a source upon
completion of an operation.

Furthermore, because instruction
packets now represent the control
dependencies in a very well defined
form, they can be used in active reads,
whereby the delivery of an packet will
tell, e.g. a timestamp generator both to
read the current time, and where to send
it.

4.0 Conclusion

By removing the distinction
between data and instructions in the
switch fabric of FLEET, we allow
instructions to be a 1% class datatype. In
doing this we simplify the overall
architecture by removing a redundant
switch fabric, and the need for a special
fetch SHIP. This also reduces the cost
related to the source sequence guarantee,
by allowing the user to selectively
invoke it. In addition the issues which
have perennially plagued the literals and
token sequencing mechanisms become
simplified in a unified way, which has
the added benefit of completely
obviating the need for SHIPs which
generate a fixed literal upon the receipt
of a token.

Overall first class instructions
simplify a wide range of design,
programming and implementation
problems by relying on the well
understood mechanism of packet
switched networks to control both
sequencing, communication and control.

