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1.0 Introduction 
In attempting to work through 

the problems from this homework, I 
found myself reminded of a series of the 
SHIPs we have discussed in the past: 
namely the “stride” SHIP which was 
responsible for generating stided (or 
simply incremented) streams of 
numbers.  I found the lack of this 
abstraction among our current repertoire 
of SHIPs particularly painful while 
working through the program in section 
3.2 Matrix Transpose. 

While the addition of stride 
generation to the memory SHIP has been 
a powerful tool, it’s disappearance as an 
abstract concept ensures that nested for-
loops of any kind become a painful 
ordeal to program, let along diagram in 
FLEET. 

As such, I advocate here for the 
separation of stride from memory access, 
in the manner described in section 2.2 
Stride SHIP.  I will also touch on the 
fetch SHIP, since we have had a number 
of conflicting proposals, and finally in 
section 3.0 Programs, I will show two 
example programs built using these 
SHIPs. 

 

2.0 SHIPs 

2.1 Fetch SHIP 
This section exists not to propose 

an alternative fetch SHIP, as we have a 
wide variety from which to choose, but 
to state that I believe the fetch SHIP 

described in IES37 as the “conditional 
fetch SHIP,” or perhaps the composite 
“four part fetch SHIP” are ideal. 

 

2.2 Stride SHIP 
All four of the programs 

described in the homework from IES40 
would rely on counted for-loops in a 
language like C.  While our memory 
access SHIP is exceedingly good at these 
kinds of operations, thanks to it’s stride 
interface, we are left in the cold with 
respect to compose operations, such as 
nested for-loops. 

To remedy this situation I 
propose the use of the general 
stride/count SHIP shown in Figure 1 
below. 

 

 
Figure 1: Stride SHIP 

 
Upon receipt of a start, increment 

and count this SHIP will produce C 
numbers from S to S + (C – 1)I.  No 
output will be generated until an N token 
is received, however.  Upon receipt of an 
N token, after count numbers have been 
produced, the SHIP will generate a J.  
This means the environment must 
provide C + 1 tokens at the N input, 
making it far easier to pipeline. 

 



2.3 Read SHIP 
In order to both simplify the 

memory read SHIP and show the use of 
the stride SHIP, figure 2, below, shows 
the composite use of the simple memory 
read interface previously documented 
and the stride SHIP to form the more 
complex, strided memory interface, 
previously documented. 

 
Figure 2: Strided Memory Read SHIP 

 

2.4 Write SHIP 
Similar to figure 2, figure 3 

shows the composite write SHIP. 

 
Figure 3: Strided Memory Write SHIP 

3.0 Programs 

3.1 Array Reversal 
Reverse an array of C elements, 

starting at a specified base address (B), 
using two memory read SHIPs, two 
memory write SHIPs, one stride SHIP, 
and one simple (unconditional) fetch 
SHIP.  The program will also require 
two copy SHIPs, a divide by two (shift 
right by one) SHIP, a subtractor SHIP, 
three barrier SHIPs, a token and and 
register SHIP. 

 
Codebag Reverse { 
move B -> stride.s 
move 1 -> stride.i 
move c -> divby2.i 

move divby2.o -> stride.c 
 
move stride.j -> barrier1.i0 
move (Cleanup) -> barrier1.i1 
move barrier1.o0 -> bitbucket 
move barrier1.o1 -> fetch.cbd 
move fetch.done -> J 
 
move stride.x -*> copy2.i 
move copy2.o0 -*> read1.a 
move copy2.o1 -*> barrier2.i0 
move copy2.o2 -*> sub2.i1 
move read1.j -*> barrier2.i1 
move barrier2.o0 -*> write2.a 
move barrier2.o1 -*> bitbucket 
 
move C -> sub1.i0 
move 1 -> sub1.i1 
move sub1.o -> register.i 
move register.o -*> sub2.i0 
 
move sub2.o -*> copy1.i 
move copy1.o0 -*> read2.a 
move copy1.o1 -*> barrier1.i0 
move read2.j -*> barrier1.i1 
move barrier1.o0 -*> write1.a 
move barrier1.o1 -*> bitbucket 
 
move write1.j -*> and.i0 
move write2.j -*> and.i1 
move and.o -*> stride.n 
} 
 
Codebag Cleanup { 
move stride.x -0> bitbucket 
move copy2.o0 -0> bitbucket 
move copy2.o1 -0> bitbucket 
move copy2.o2 -0> bitbucket 
move read1.j -0> bitbucket 
move barrier2.o0 -0> bitbucket 
move barrier2.o1 -0> bitbucket 
 
move register.o -0> bitbucket 
 
move sub2.o -0> bitbucket 
move copy1.o0 -0> bitbucket 
move copy1.o1 -0> bitbucket 
move read2.j -0> bitbucket 
move barrier1.o0 -0> bitbucket 
move barrier1.o1 -0> bitbucket 
 
move write1.j -0> bitbucket 
move write2.j -0> bitbucket 
move and.o -0> bitbucket 
} 



3.2 Matrix Transpose 
Transpose for an m*n matrix.  

Inputs are source address (src), 
destination address (dest), m (M) and n 
(N).  Only output is done (J).  For this 
code to run there will need to be 4 stride 
SHIPs, a memory read, a memory write, 
and a simple fetch SHIP (no conditional) 
all behaving as outlined in section 2.0 
SHIPs.  It also requires a barrier SHIP, a 
copy SHIP and a token-and SHIP. 

The program will read the source 
matrix in column order, and write the 
destinatination matrix in row order.  It 
will only produce a J token when the 
final memory write has taken place. 

 
Codebag Transpose { 
move src -> stride1.s 
move 1 -> stride1.i 
move N -> stride1.c 
 
move dest -> stride3.s 
move M -> stride 3.i 
move N -> stride 3.c 
 
move stride1.x -*> stride2.s 
move stride2.j -*> stride1.n 
move stride1.j -> bitbucket 
 
move stride3.x -*> stride4.s 
move stride4.j -*> stride3.n 
move stride3.j -> barrier.i1 
 
move barrier.o1 -> bitbucket 
move (Cleanup) -> barrier.i0 
move barrier.i0 -> fetch.cbd 
move fetch.done -> J 
 
// Notice that it is not clear 
// how copies of literals are 
// made, or standing moves from 
// literals are cleaned up.  I 
// will therefore omit their 
// cleanup 
move N -*> stride2.i 
move M -*> stride2.c 
 
move 1 -*> stride4.i 
move M -*> stride4.c 
 
move stride2.x -*> memread.a 

move stride4.x -*> memwrite.a 
move memread.d -*> memwrite.d 
 
move memwrite.j -*> copy.i 
move copy.o0 -*> stride4.n 
move copy.o1 -*> and.i0 
move memread.j -*> and.i1 
move and.o -*> stride2.n 
} 
 
Codebag Cleanup { 
move stride1.x -0> bitbucket 
move stride2.j -0> bitbucket 
 
move stride3.x -0> bitbucket 
move stride4.j -0> bitbucket 
 
move stride2.x -0> bitbucket 
move stride4.x -0> bitbucket 
move memread.d -0> bitbucket 
 
move memwrite.j -0> bitbucket 
move copy.o0 -0> bitbucket 
move copy.o1 -0> bitbucket 
move memread.j -0> bitbucket 
move and.o -0> bitbucket 
} 

 

4.0 Conclusion 
First and foremost, the separation 

of stride from the memory SHIPs clearly 
makes these kinds of strided and counted 
operations significantly easier to 
program.  The reason for this is clear: 
the stride SHIP provides at the FLEET 
architecture level the same facility that 
simple, counted for-loops provide in 
higher level languages, or that repeat 
instructions provide in some other 
architectures. 

The second realization is that the 
need to define pipeline interfaces in a 
uniform manner, and I advocate the 
design described in section 2.2 Stride 
SHIP, is far more clear once routines, or 
functions such as those in section 3.0 
Programs are introduced.  The key point 
here is that these two programs do not 
actually generate done tokens when they 



are done, but slightly before.  This may 
actually be slightly dangerous. 

Third, many routines such as this 
will require a cleanup of all standing 
moves upon the generation of a token, 
and, ideally, the generation of a second 
token upon completion of the standing 
move cleanup.  While this somewhat 
serializes the execution, the fact is that 
some form of serialization is necessary 
for virtualization of the FLEET. 

Such a cleanup facility can be 
written at the code level, as it is here, or 
at the compiler level.  The compiler 
could create the cleanup for a specific 
code bag by copying it, removing all 
non-standing moves and turning the 
remaining moves into move ?? -0> 

bitbucket.  Or even better move ?? -
0> and.i? thereby using a token and to 
generate a “cleanup done” token. 

While these two options are 
clearly equally powerful, though using 
the compiler means a lot less coding, 
there is a third option: integrate this 
feature into the hardware.  I do not yet 
endorse this as a solution, as it remains 
unclear how useful it will be, but I will 
outline the basic premise here.  Either 
through the use of a special fetch SHIP 
which outputs fetched instructions as 
data, or through the standard memory 
read SHIP (in the case of first class 
instructions) the contents of a code bag 
could be sent to a special “create 
cleanup” SHIP.  This SHIP would take a 
stream of move instructions as data, and 
for each one either simply drop it, or 
produce a corresponding “tear down” or 
“token move”.  The resulting token 
moves could be loaded into a FIFO 
whose output is connected to some form 
of barrier.  The barrier’s other input 
could be the “please clean me up” token 
from the original code bag.  Upon 
receipt of this token, the barrier would 

then issues all of instructions in the 
FIFO, cleaning up the previous code 
bag, and possibly generating a “cleanup 
done” token. 

Note that this scheme requires 
that certain SHIPs, the transformation 
SHIP, FIFO and fetch, be able to accept 
actual instructions as input, and is thus 
another compelling argument for first 
class instructions.  However further 
discussion will be omitted from this 
paper. 


