Two FLEET Programs

Greg Gibeling
Tuesday October 24™, 2006
GDGO04 — Two FLEET Programs

1.0 Introduction

In attempting to work through
the problems from this homework, I
found myself reminded of a series of the
SHIPs we have discussed in the past:
namely the “stride” SHIP which was
responsible for generating stided (or
simply incremented) streams of
numbers. I found the lack of this
abstraction among our current repertoire
of SHIPs particularly painful while
working through the program in section
3.2 Matrix Transpose.

While the addition of stride
generation to the memory SHIP has been
a powerful tool, it’s disappearance as an
abstract concept ensures that nested for-
loops of any kind become a painful
ordeal to program, let along diagram in
FLEET.

As such, I advocate here for the
separation of stride from memory access,
in the manner described in section 2.2
Stride SHIP. I will also touch on the
fetch SHIP, since we have had a number
of conflicting proposals, and finally in
section 3.0 Programs, I will show two
example programs built using these
SHIPs.

2.0 SHIPs
2.1 Fetch SHIP

This section exists not to propose
an alternative fetch SHIP, as we have a
wide variety from which to choose, but
to state that I believe the fetch SHIP

described in IES37 as the “conditional
fetch SHIP,” or perhaps the composite
“four part fetch SHIP” are ideal.

2.2 Stride SHIP

All four of the programs
described in the homework from IES40
would rely on counted for-loops in a
language like C. While our memory
access SHIP is exceedingly good at these
kinds of operations, thanks to it’s stride
interface, we are left in the cold with
respect to compose operations, such as
nested for-loops.

To remedy this situation [
propose the wuse of the general
stride/count SHIP shown in Figure 1
below.

Stride SHIP
—)| Start (S) (N) Next
—¥ Increment (I) (X) Out |—»
— ¥ Count (C) (J) Done [—»

Figure 1: Stride SHIP

Upon receipt of a start, increment
and count this SHIP will produce c
numbers from stos + (¢ - 1)I. No
output will be generated until an N token
is received, however. Upon receipt of an
N token, after count numbers have been
produced, the SHIP will generate a J.
This means the environment must
provide ¢ + 1 tokens at the N input,
making it far easier to pipeline.

2.3 Read SHIP

In order to both simplify the
memory read SHIP and show the use of
the stride SHIP, figure 2, below, shows
the composite use of the simple memory
read interface previously documented
and the stride SHIP to form the more

complex, strided memory interface,
previously documented.
Strided Memory Read
Initial N
Stride SHIP Token Memory Read

[—S— Start(S) (N) Next E Done (J)

—I— Increment (1) (X) Out Address (A) (D) Data —D—|

+—C—¥ Count (C) (J) Done “

Figure 2: Strided Memory Read SHIP

2.4 Write SHIP

Similar to figure 2, figure 3

shows the composite write SHIP.
Strided Memory Read

. |;‘) Initial)
Stride SHIP Token Memory Write
—S—» Start (S) (N) Next Done (J)
—I—¥ Increment (1) (X) Out Address (A)
—C—¥ Count (C) (J) Done Data (D)
] ‘

Figure 3: Strided Memory Write SHIP
3.0 Programs

3.1 Array Reversal

Reverse an array of c elements,
starting at a specified base address (B),
using two memory read SHIPs, two
memory write SHIPs, one stride SHIP,
and one simple (unconditional) fetch
SHIP. The program will also require
two copy SHIPs, a divide by two (shift
right by one) SHIP, a subtractor SHIP,
three barrier SHIPs, a token and and
register SHIP.

Codebag Reverse ({

move B —> stride.s
move 1 —> stride.i
move ¢ —> divby2.1i

move

move
move
move
move
move

move
move
move
move
move
move
move

move
move
move
move

move
move
move
move
move
move

move
move
move

}

divby2.0 —-> stride.c

stride.j -> barrierl.iO

(Cleanup) —>
barrierl.o0
barrierl.ol

barrierl.il

-> bitbucket
-> fetch.cbd

fetch.done -> J

stride.x —*>
copy2.00 —*>
copy2.0l —*>
copy2.02 —*>

copy2.1
readl.a
barrier2.i0
sub2.1il

readl.j —-*> barrier2.il

barrier2.00
barrier2.ol

C —> subl.i0
1 —> subl.il

—-*> write2.a
—-*> bitbucket

subl.o -> register.i
register.o —*> sub2.i0

sub2.0 —-*> copyl.i

copyl.o0 —*>
copyl.ol —*>
read?2. j
barrierl.o0
barrierl.ol

writel.j —*>
write2.j —*>

read2.a
barrierl.i0

—*> barrierl.il
—-*> writel.a
—-*> bitbucket

and.i0
and.il

and.o —*> stride.n

Codebag Cleanup {

move
move
move
move
move
move
move

move

move
move
move
move
move
move

move
move
move

stride.x -0>
copy2.00 -0>
copy2.0l -0>
copy2.02 —0>

bitbucket
bitbucket
bitbucket
bitbucket

readl.j -0> bitbucket

barrier2.00
barrier2.ol

-0> bitbucket
-0> bitbucket

register.o —-0> bitbucket

sub2.0 —-0> bitbucket

copyl.o0 -0>
copyl.ol -0>

bitbucket
bitbucket

read2.j —-0> bitbucket

barrierl.o0
barrierl.ol

writel.j -0>
write2.j -0>

-0> bitbucket
-0> bitbucket

bitbucket
bitbucket

and.o -0> bitbucket

3.2 Matrix Transpose

Transpose for an m*n matrix.
Inputs are source address (src),
destination address (dest), m (M) and n
(N). Only output is done (J). For this
code to run there will need to be 4 stride
SHIPs, a memory read, a memory write,
and a simple fetch SHIP (no conditional)
all behaving as outlined in section 2.0
SHIPs. It also requires a barrier SHIP, a
copy SHIP and a token-and SHIP.

The program will read the source
matrix in column order, and write the
destinatination matrix in row order. It
will only produce a J token when the
final memory write has taken place.

Codebag Transpose {
move src —-> stridel.s
move 1 —> stridel.i
move N —-> stridel.c

move dest —-> stride3.s
move M —-> stride 3.1i
move N -> stride 3.c

move stridel.x —*> stride2.s
move stride2.j —-*> stridel.n
move stridel.j —-> bitbucket

move stride3.x —*> strided.s
move strided.j —-*> stride3.n
move stride3.j -> barrier.il

move barrier.ol -> bitbucket
move (Cleanup) —-> barrier.iO
move barrier.i0 -> fetch.cbd
move fetch.done -> J

// Notice that it is not clear
// how copies of literals are
// made, or standing moves from

// literals are cleaned up. I
// will therefore omit their
// cleanup

move N —*> stride2.i
move M —*> stride2.c

move 1 —*> strided.i
move M —*> strided.c

move stride2.x —*> memread.a

move strided.x —*> memwrite.a
move memread.d —*> memwrite.d

move memwrite.j —*> copy.i
move copy.o0 —*> strided.n
move copy.ol —*> and.i0
move memread.j —*> and.il
move and.o —*> stride2.n

}

Codebag Cleanup {
move stridel.x -0> bitbucket
move stride2.j -0> bitbucket

-0> bitbucket
-0> bitbucket

move stride3.
move strided.

X

move stride2.x -0> bitbucket
move strided.x —-0> bitbucket
move memread.d -0> bitbucket

move memwrite.j —-0> bitbucket
move copy.o0 —-0> bitbucket
move copy.ol —-0> bitbucket
move memread.]j —-0> bitbucket
move and.o —-0> bitbucket

4.0 Conclusion

First and foremost, the separation
of stride from the memory SHIPs clearly
makes these kinds of strided and counted
operations significantly easier to
program. The reason for this is clear:
the stride SHIP provides at the FLEET
architecture level the same facility that
simple, counted for-loops provide in
higher level languages, or that repeat
instructions provide in some other
architectures.

The second realization is that the
need to define pipeline interfaces in a
uniform manner, and I advocate the
design described in section 2.2 Stride
SHIP, is far more clear once routines, or
functions such as those in section 3.0
Programs are introduced. The key point
here is that these two programs do not
actually generate done tokens when they

are done, but slightly before. This may
actually be slightly dangerous.

Third, many routines such as this
will require a cleanup of all standing
moves upon the generation of a token,
and, ideally, the generation of a second
token upon completion of the standing
move cleanup. While this somewhat
serializes the execution, the fact is that
some form of serialization is necessary
for virtualization of the FLEET.

Such a cleanup facility can be
written at the code level, as it is here, or
at the compiler level. The compiler
could create the cleanup for a specific
code bag by copying it, removing all
non-standing moves and turning the
remaining moves into move ?? -0>
bitbucket. Or even better move 2?2 -
0> and.i? thereby using a token and to
generate a “cleanup done” token.

While these two options are
clearly equally powerful, though using
the compiler means a lot less coding,
there is a third option: integrate this
feature into the hardware. I do not yet
endorse this as a solution, as it remains
unclear how useful it will be, but I will
outline the basic premise here. Either
through the use of a special fetch SHIP
which outputs fetched instructions as
data, or through the standard memory
read SHIP (in the case of first class
instructions) the contents of a code bag
could be sent to a special “create
cleanup” SHIP. This SHIP would take a
stream of move instructions as data, and
for each one either simply drop it, or
produce a corresponding “tear down” or
“token move”. The resulting token
moves could be loaded into a FIFO
whose output is connected to some form
of barrier. The barrier’s other input
could be the “please clean me up” token
from the original code bag. Upon
receipt of this token, the barrier would

then issues all of instructions in the
FIFO, cleaning up the previous code
bag, and possibly generating a “cleanup
done” token.

Note that this scheme requires
that certain SHIPs, the transformation
SHIP, FIFO and fetch, be able to accept
actual instructions as input, and is thus
another compelling argument for first
class instructions. However further
discussion will be omitted from this

paper.

