Summary of FLEET 2006

Greg Gibeling
Friday December 15™, 2006
GDGO7 — Summary of FLEET 2006

1.0 Introduction

In the past year FLEET has
progressed from an intellectual exercise
among a small group of graduate
students and researchers into a full
blown architectural specification for
which real code can and has been
written. In this memo, I intend to sum
up particularly those changes which
have occurred in the last 4 months to
bring this about, along with my
commentary on this progress, some
suggestions for the future and concerns
over these developments.

2.0 Progress

The most significant progress to
FLEET since 2005 have been the
creation of in and outboxes, which were
originally invented to provide an
abstraction for the simple flow control
boundary between SHIPs and the switch
fabric.

As a result of these developments
it became possible to implement a
standardized FLEET in a Xilinx FPGA
using RDL. In addition, an integrated
assembler for FLEET programs and
some basic debugging hardware led to
the creation of several running example
programs for the first hardware
implementation of FLEET.

One of the primary concerns in
building FLEET has been the cost of
switch fabric traversals, and instruction
distribution. This has spawned a number
of design decisions starting with

standing and counted moves,
progressing through records in the
middle of the year, and ending with the
design of more advanced boxes, with
support for ZOMA moves, and token
triggering.

With the introduction of these
boxes, FLEET, a year later is a fully
programmable, and reasonably usable
architecture, to the point that I find it no
harder to write FLEET assembly than
x86.

Best of all, with the passing of
two semesters and the hard work of a
number of students and researchers there
are now a total of 4 implementations of
FLEET, two in hardware, two in
software, a wide range of running
example code and best yet, a stable
instruction set architecture definition.

3.0 Concerns

Despite all of the major progress
made in the last 12 months, there are still
a number of concerns associated with the
current design of FLEET.

First, as we have spent more time
designing and perfecting the switch
fabric to support more complex move
instructions, like standing moves, we
have increased the cost of switch fabric
traversals. To me, this raises the
concern the we may be in the middle of
a design spiral whereby our attempts to
compensate for the cost of traversing the
switch fabric are actually increasing this
cost. Without hard performance data,

this is hard to judge, but it is still a very
real concern that we must be mindful of.

This leads to the second clear
problem with our work so far, as yet we
have no hard performance data for any
one of the four FLEET implementations.
This is unsurprising, as we had no stable
ISA until very recently, and yet now that
we do, benchmarks must become an
important part of our work on FLEET.

One of the key problems going
forward is the current trend in computer
architecture to use realistic programs to
benchmark a design. While this is
highly commendable in that it tends to
produce more believable and relevant
results, it has the downside that a high
level programming abstraction must be
available to implement these
benchmarks.

Given that we still have no
available high level programming
languages, and not even a matching
model, this may become a serious
problem moving forward. The
alternative of course is to implement
these complicated benchmarks in
FLEET assembly, a painful prospect.

4.0 Further Ideas

During the past year we have
adopted a number of very clever ideas to
improve FLEET, there remain several
which have not been fully examined.

First of all, among the hardware
implementations there is a relatively
high cost to separate implementations of
the instruction and data switch fabrics.
This has led to the relatively simple
suggestion that the two should be
merged into a single simple packet
switched fabric.

While the most recent hardware
implementation of FLEET by Adam
Megacz makes use of this as a design,

we have, as yet, not fully evaluated the
consequences of this decision. For
example the memo GDGOI makes the
suggestion that first class instructions
would provide a better mechanism for
everything from literals to data
dependant branches to the interaction
between control and dataflow, a subject
which has been somewhat neglected
with the advent of boxes from AMI1I.
More important, 1*' class instructions
were intended to provide a way to allow
the programmer to decide the
sequencing guarantees they need from
the fetch SHIP.

While first class instructions
remain somewhat of a mystery to most,
there is a clear need for virtualization,
some kind of control transfer mechanism
for function calls, and the design of Chip
Multi-Processors, referred to as Flotillas.

While these three ideas have
been the subject of memos in the last 4
months, they have received almost no
serious investigation, as the ISA
question remained open.

5.0 Conclusion

The largest and clearest
conclusions from the above sections are
that, one, we have completed a major
step by finishing the ISA specification to
a usable state, and two, testing and
concrete performance measurements are
now very much in order.

This means that the next step in
our work must be to produce a series of
working implementations of FLEET
with realistic performance, in order to
evaluate our design decisions against
working hardware.

6.0 FLEET in 2007

Building on the conclusion of
this memo, above, and the progress
made on the RDL Compiler v3, I believe
it is time to update the RDL
implementation of FLEET to match the
new ISA specification.

By using RDL, I believe we can
more easily separate the performance of
the design from its functionality
allowing us to experiment with a wide
range of designs for SHIPs, switch
fabrics and more advanced concepts like
virtualization and boxes.

Finally, in conjunction with
larger FPGA platforms such as the
BEE2, I believe we will be able to run
concrete experiments with Flotillas fast
enough that it is quite possible we may
be able to produce a FLEET capable of
being used as an actual computer
terminal.

