
Verilog Circuit Rules

Greg Gibeling
UC Berkeley

gdgib@eecs.berkeley.edu

November 1, 2007

1 Purpose

This document is a comprehensive list of which Verilog constructs are allowed in CS61C. You may wish
to print it out to have handy, but if you do so, keep an eye out for updates, as mistakes are found. Do not
worry if you don’t know these constructs, we have not covered them all, as they are prohibited anyway.

2 SubSets of Verilog

Structural: Structural Verilog modules consist only of input, output and wire declarations with prim-
itive gates or other module instantiations. Structural Verilog is the subset closest to true circuit
implementations, and will almost always be an acceptable implementation methodology in this
class.

Continuous: Continuous Verilog modules may include anything from the Structural Verilog subset, with
the addition of assign statements. assign statements provide for continuous (always happening)
assignment, and are a good way to transcribe boolean equations (& for AND, | for OR, ˜ for NOT).
We will often allow you to use Continuous Verilog, but some assignments in CS61C will restrict
the you to using 1bit values in your assign statements.

Procedural: Procedural Verilog is the largest subset of the language, and includes all of the above, plus
always and initial along with the signal type reg which they require. You will never be allowed
to use Procedural Verilog for anything except testbenches. Note that many of the modules we will
give you use Procedural Verilog. We are in effect cheating on the rules by doing this. If you want
to learn to use Procedural Verilog safely, and be allowed to use it in circuits, you take EECS150.

3 Restrictions

Always blocks: always blocks may be used in testbenches, or to build registers. always blocks for
registers must be of the form always @ (posedge Clock) and must use nonblocking assignment <=.
You should generalize registers from our examples, rather than write your own. You may not put
any combination logic in a register, in other words an always @ (posedge Clock) block may not
contain even a simple counter: the increment (add one) logic must be implemented outside of the
always block.

Variable Index: Variable-indexed shifts (<< or >>) and bit-selects (x[y] or x[y:z]) are not allowed.
Variable-indexed register files are okay, but we will give you code for these. This restriction means
that you can use shifts and bit-selects, but that the indices must be constants.

Looping: The keywords forever, repeat, while, for, fork and join may appear only in testbenches.

Macros: The keyword ‘timescale must appear in every testbench, and nowhere else.

1

http://www.cs.berkeley.edu/~gdgib/

4 Prohibitions

Non-Circuits: These are constructs which are difficult if not impossible to translate into circuits. As
a result you may not use them, except in testbenches.

Directives: Any statement beginning with a $, such as $display.

Drive strength: Anything relating to drive strength.

Undrived signals: The constant 1’bz or the tests for it === or ==\!

Nesting: The keyword assign may not be nested with an always or initial block.

Keywords: The keywords force, release, deassign, disable, parameter and localparam.

Operators: Multiplication (∗), division (/) and modulus (%).

Events: The keywords wait, @event and specify.

Tasks: The keywords function, task and generate.

Non-Bit types: integer, signed, string , real, time and realtime.

Macros: ‘define, ‘undef, ‘ifdef , ‘else, ‘endif, ‘default nettype, ‘include, ‘resetall, ‘unconnected drive

and ‘celldefine.

Non-standard signal types: tri, wor, trior, wand, triand, trireg, tri1, tri0, supply0 and supply1.

UDP’s: User defined primitives.

2

	Purpose
	SubSets of Verilog
	Restrictions
	Prohibitions

