Verilog Green Card

Greg Gibeling
UC Berkeley
gdgib@eecs.berkeley.edu

October 29, 2007

1 Purpose

This document is intended as a printable quick reference for the Verilog HDL, and as a partial list of the
constructs allowed in CS61C. You may wish to print it out to have handy, but if you do so, keep an eye
out for updates, as mistakes are found.

2 Signal Declarations

There are two types of signals: wire and reg. reg signals are generated by initial or always blocks.
wire signals are generated by assign statements, hierarchical module instantiations or primitives.

There are four uses for signals: internal, input, output and inout. Internal signals do not cross in or
out of the module they are declared in, though they may be connected to ports on lower level modules.
The remaining three uses of signals are for ports, and their name gives their direction. Internal, output
and inout signals may of type wire or reg.

Decl. Width Desc. Generated From

wire WireName; 1bit Simple Wire assign, hierarchy, primitives
wire [3:0] WireName; 4bit Bus or BitVector assign, hierarchy, primitives
reg WireName; 1bit "State’ Wire always, initial

reg [8:1] WireName; 8bit "State’ Bus or BitVector always, initial

input InputName; 1bit Simple Input Wire hierarchy (outside)

output [3:0] OutputName; 4bit Output Bus or BitVector assign, hierarchy, primitives
output reg [7:0] OutputName; 8bit Output ’State’ Bus or BitVector always, initial

3 Instantiation & Modules

Below is an example module declaration. The order of the port declarations is unimportant. Because
Verilog is not an imperative (command based) language, the order of the statements within a module is
irrelevant, just as the order in which you draw the boxes in a schematic is irrelevant.

1module ModuleName (Port0, Portl);

2 input Portl;
3 output Port0;
4 // The actual logic (module level statements) goes here

sendmodule // ModuleName

Below is an example showing two identical instantiations of the above module. By convention, the
second one, which uses "named connections”, is far proffered over the first, which relies on order of the
connections.

ModuleName FirstInstanceName (LocalWire0, LocalWirel);
2 ModuleName SecondInstanceName (.Portl(LocalWirel), .Port0(LocalWire0));

-

http://www.cs.berkeley.edu/~gdgib/

4 TestBenches

TestBenches can be written using the full expressive power of the Verilog language. This includes
always @ (x), initial and for example $display(). These constructs are allowed in testbenches because,
while they do not map to circuits, a testbench is not intended to describe a circuit.

The below table lists the constructs which you may wish to use in a testbench. You may of course
use any construct listed in section 5 in addition to those below.

Syntax Use Example Description

always @ (x) begin ... end module level Combinational, procedural logic

always @ (posedge Clock) module level Register, sequential circuit

initial begin ... end module level Initial conditions and tests

$display(x, y, 2) statement $display("Hello”)! Output text

$stop statement Stop the simulation

+ expression assign #1 x =y + z; Addition

— expression assign #1 x =y — z Subtraction

* expression assign #1 x =y * z; Unsigned multiplication
expression assign #1x =y / z Unsigned division

% expression assign #1 x =y % z; Unsigned modulo or remainder

<< and >> expression assign #1 x =y << z; Unsigned shift

While there are tools which can turn + and — as well as the various kinds of always blocks into
circuits, these tools are quite advanced. The other constructs in this table cannot be turned into circuits.
Finally, rather than use the << or >> operators, you should use bit-selections and concatenation shown
below.

5 Circuits

Module which are intended to describe a circuit may only use a subset of the Verilog language. In
particular the constructs in the below table may be used in circuits. The table lists the vague syntax,
where the construct may appear, an example and a description. x, y and z are signals, c is a constant.

Syntax Use Example Description

assign module level assign #1 x =y \& z; Express bitwise logic as equations
{x, vy} expression assign #1 {x, y} = 0; Bit-vector concatenation

cfx, y} expression 16{1’b1} Bit-vector replication, ¢ is constant
x[c] expression assign #1 x[4] = y[2]; Bit-vector selection, result is a signal
x[c0:cl] expression x [4:3] Bit-vector range selection

x?Ty:z expression x[0] 7y : = Multiplexor, select must be 1-bit

“x expression “x Inverter, NOT gate, bitwise NOT
x|y expression x|yl =z Multi-input OR gate, bitwise OR
x&y expression x&y &z Multi-input AND gate, bitwise AND
x "y expression x"y "z Multi-input XOR, gate, bitwise XOR
not name(...) module level not name(out, in) Inverter, NOT gate

or name(...) module level or name(out, in0, inl, in2) Multi-input OR gate

and name(...) module level and name(out, in0, inl, in2) Multi-input AND gate
xor name(...) module level xor name(out, in0, inl, in2) Multi-input XOR gate

6 Common Pitfalls

This section lists several common pitfalls which trap the novice Verilog user. Most important is that
unlike Java or even C, Verilog does not check the types or widths of signals very strenuously. In all three
below cases, the compiler will not warn you of your mistake.

Undeclared Wires: In Verilog any signal which is undeclared is automatically a 1-bit wire. Assigning
to undeclared signals from an always or initial block will result in compiler errors. Forgetting to
declare a bus or bit-vector will result in only the Oth being connected properly (see below).

Width Mistmatch (Small Wire): Connecting a small wire (e.g. 1-bit) to a large port (e.g. 4-bit),
will cause a ”port width mismatch” warning. Some of the signals intended for the bus will be lost,
and only the lowest few bits will appear at the other end.

Width Mistmatch (Large Wire): Connecting a large wire (e.g. 4-bit) to a small port (e.g. 1-bit),
will cause a "port width mismatch” warning. Many waveforms will appear in blue, denoting an
undriven signal, because there are bits of the bus which have no source.

	Purpose
	Signal Declarations
	Instantiation & Modules
	TestBenches
	Circuits
	Common Pitfalls

